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Abstract. It is shown that the usual Hamilton’s variational principle supplemented by the methodology
of the integer-programming problem can be used to construct expressions for the Lagrangian densities
of higher KdV fields. This is demonstrated with special emphasis on the second and third members of
the hierarchy. However, the method is general enough for applications to equations of any order. The
expressions for Lagrangian densities are used to calculate results for Hamiltonian densities that characterize
Zakharov-Faddeev-Gardner equation.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 42.81.Dp Propagation, scattering,
and losses; solitons

Three decades have passed when the Korteweg-de Vries
(KdV) equation

ut = −uxxx + 6uux (1)

was interpreted by Zakharov and Faddeev [1] and by
Gardner [2] as a completely integrable Hamiltonian sys-
tem in an infinite dimensional phase space. The Hamilto-
nian form of (1) is given by

ut = ∂x
δH
δu

(2)

with ∂x = ∂/∂x, the Hamiltonian operator and H =
u3 − u2

x/2, the Hamiltonian density. Here u = u(x, t) and
subscripts of u refer to the corresponding partial deriva-
tives. The variational or Euler derivative

δ

δx
=

∂

∂u
− ∂

∂x

∂

∂ux
+

∂2

∂x2

∂

∂u2x
− · · · (3)

Hierarchies of infinitely many commuting vector fields and
constants of the motion in involution for the KdV equation
were constructed by Lax [3] and by Gel’fand and Dikii [4]
using the equation for the squared eigenfunction of the
Schrödinger operator. The equations in the hierarchy, of-
ten called the higher KdV equations, exhibit the same
Hamiltonian structure as given in (2). The object of the
present work is to solve the inverse problem of variational
calculus for equations in the KdV hierarchy and thus de-
rive a method to construct expressions for Hamiltonian
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densities that characterize the Zakharov-Faddeev-Gardner
equation in (2).

All problems of variational methods fall into one of
the two groups. (i) The direct problem, where one first as-
signs a Lagrangian to the dynamical system and then com-
putes the equations of motion and, (ii) the inverse problem
posed in the opposite direction. Here one begins with the
equations of motion and tries to derive the Lagrangian
for the system. The representation of a system in terms
of Euler-Lagrange equations goes by the name analytic
representation [5]. For nonlinear evolution equations the
Helmholtz theorem [6] serves as a useful tool to solve the
inverse problem and thereby study their analytic repre-
sentation. Being derivable from the theory of Lie groups
this theorem is both algebraic and geometric in nature.
For example, the selfadjointness of the Frechet derivative

DP (Q) =
d
dε

P [u + εQ[u] ] |
ε=0 (4)

guarantees the existence of the Lagrangian while the ex-
plicit expression for the velocity independent part of the
Lagrangian density, L2 is constructed by using the homo-
topy formula

L2[u] =
∫ 1

0

u P [λu] dλ. (5)

Here P stands for the Euler-Lagrange expression of the
variational problem. In the following we use (4) and (5)
to deal with the KdV equations.

One common trick to put a single evolution equation
into the variational form is to replace u by a potential
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function w defined by

w(x, t) =
∫ ∞

x

dy u(y, t) (6)

such that

wx(x, t) = −u(x, t). (7)

Note that this trick works only for equations which are
of odd order in space derivatives and, fortunately for us,
all higher KdV equations belong to this class. Using (7)
in (1) we get

wxt + w4x + 6wxw2x = 0. (8)

From (8) the Euler-Lagrange expression

P [w] = w4x + 6wxw2x, (9)

using (4), gives the self adjoint operator

DP = D4
x + 6w2xDx + 6wxDx (10)

proving the existence of the Lagrangian for (1). The
Lagrangian density L2 for P [w] in (9) can be calculated
from (5) to give

L2 =
1
2
ww4x + 2wwxw2x. (11)

The total Lagrangian density for (8) is obtained by adding
a velocity, (wt), dependent part, L1 = wxwt/2 to L2 and
we have

Lh =
1
2
wxwt +

1
2
ww4x + 2wwxw2x. (12)

The expression in (12) is of first order in time and fourth
order in space. It is of interest to note that the Lagrangian
density for (1) or (8) can also be computed without mak-
ing use of the homotopy formula (5). To see this we inte-
grate (8) with respect to x and write

wt + w3x + 3w2
x = 0. (13)

Here we have used the boundary conditions u(x, t) → 0
as x → ±∞. It is easy to express (13) in the variational
form [7]

δ

∫ t2

t1

dt

∫ ∞

−∞
dxL (wt, wx, wxx) = 0 (14)

with the Lagrangian density

Lv =
1
2
wtwx − 1

2
w2

2x + w3
x. (15)

The subscripts h and v of L refer to Lagrangian densities
obtained from the homotopy formula and direct use of
variational principle. As opposed to the result for Lh, the

expression for Lv is only of second order in space deriva-
tive. However, Lh and Lv are equivalent because they dif-
fer by a gauge function and one can write

Lh = Lv + ∂x

(
1
2
ww3x − 1

2
wxw2x − ww2

x

)
. (16)

It is easy to verify that both Lh and Lv when substi-
tuted in the appropriate Euler-Lagrange equations repro-
duce the evolution equations in (13). Moreover, both of
them lead to the canonical momentum density

π =
1
2
wx. (17)

This equation cannot be inverted for the velocity wt

implying that the Lagrangian densities are degener-
ate [8]. Therefore one must use the Dirac’s theory of
constraints [9] to obtain the total Hamiltonian density
given by

H = H0 + H1. (18)

Here H0 is the free part of H determined by the usual
Legendre map and evaluation of the expression for H1

requires the explicit use of Dirac’s theory. It is of interest
to note that the free part H0 only in conjunction with
equations (2, 3, 6) reproduces the KdV equation in (13)
written [10] in terms of w. The Hamiltonian densities H0h

and H0v corresponding to Lh and Lv can be obtained as

H0h = −1
2
ww4x − 2wwxw2x (19)

and

H0v =
1
2
w2

2x − w3
x. (20)

We note that both H0h and H0v have been obtained from
gauge equivalent Lagrangians. Despite that H0h when sub-
stituted in (2) does not give the equation of motion (8).
However (8) can be obtained by using H0v in (2) expressed
in terms of w.

In view of the above we feel that derivation of
a physico-mathematical method other than that based
on Helmholtz theorem to construct expressions for free
Hamiltonian densities associated with the equations in the
entire KdV hierarchy is a problem of considerable signif-
icance. We shall proceed by solving the inverse problem
and constructing expressions for Lagrangian densities. In
principle, there should not be any difficulty to do so, be-
cause the Lagrangian always exists for one dimensional
cases [11]. However, we find that it is a nontrivial alge-
braic problem to recast the higher KdV equations in the
variational form. This is true even for the first member
of hierarchy. In this work we present a general method to
construct the Lagrangian densities for higher KdV equa-
tions. Our approach to the problem is based on the fact
that some of the terms in a given higher equation can
be put in the variational form while some others can not
be. The first class of terms determines the dimension of
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the Lagrangian densities such that we could add a lin-
ear combination of dimensionally correct terms formed
from the products of the derivatives of w. Admittedly,
the additive terms are expected to take care of the terms
which could not be expressed in the variational form. An
added advantage of our method is that it can generate all
gauge equivalent Lagrangians in a rather natural way. Fur-
ther, for any equation the theory can predict the existence
of a still higher order Lagrangian than that enters into
the usual variational formulation. As opposed to the re-
sults obtained from (5) the Hamiltonians constructed from
these Lagrangians are consistent with Zakharov-Faddeev-
Gardner equation in (2). We begin by demonstrating this
with special emphasis on the second member of the KdV
hierarchy and then test the effective applicability of our
method going to the next member. These case studies ex-
hibit all mathematical complications that need to be con-
sidered for any higher KdV equation.

The equation for the second member of the KdV hier-
archy is given by

ut = u7x + 14uu5x + 42uxu4x + 70u2xu3x + 70u2u3x

+ 280uuxu2 x + 70u3
x + 140uxu3. (21)

In terms of w(x, t), equation (21) reads

wt = w7x − 14wxw5x − 28w2xw4x − 21w2
3x

+ 70w2
xw3x + 70wx w2

2x − 35w4
x. (22)

Multiplying (22) by δwx and integrating over t and x we
write

∫ t2

t1

dt

∫ +∞

−∞
dx [wt − w7x + 14wxw5x + 28w2xw4x

+ 21w2
3x − 70w2

xw3x − 70wxw2
2x + 35w4

x ] δwx = 0. (23)

The first, second and last terms in the square
bracket of (23) can be put in the variational form
as (1/2)δ

∫ t2
t1

dt
∫ +∞
−∞ dxwtwx, −(1/2)δ

∫ t2
t1

dt
∫ +∞
−∞ w2

4xdx

and (1/5)δ
∫ t2

t1
dt

∫ +∞
−∞ w5

xdx respectively. Thus the
Lagrangian density for the evolution equation in (22) has
a dimension [L−10] since w is of dimension [L−1]. We
venture to suggest that the other terms in L can be ac-
counted for by a dimensionally correct linear combination
of the form

∑
αiw

p
xwq

2x wr
3xws

4x. Here, the summation
is taken over all possible combination of p, q, r and s
(integers) such that

2p + 3q + 4r + 5s = 10 (24)

subject to the constraint

p, q, r, s ≥ 0. (25)

The structure of the equation in (24) imposes a further
constraint on the unknowns and we have

p ≤ 5, q < 4, r < 3, s ≤ 2. (26)

Table 1. Allowed values of p, q, r and s.

Set p q r s
1 0 2 1 0
2 1 0 2 0
3 2 2 0 0
4 3 0 1 0
5 1 1 0 1

Ideally, given the constraints in (25) and (26), determina-
tion of the values of p, q, r and s involves quite a com-
plicated integer programming problem [12]. However, in
the present case one can put forth some plausible argu-
ments to simplify the problem considerably. We point out
that the terms with p = 5 and s = 2 are identical with
those already expressed in the variational form. In view of
this the equality signs in (26) can be deleted. If we now
write two equations from (24) using s = 0 and 1, these
will impose further restrictions on (26) giving finally

p ≤ 3, q ≤ 2, r ≤ 2, s ≤ 1. (27)

The set of values for p, q, r and s are given in Table 1. The
set 1 gives rise to a term which is a perfect differential.
Being a gauge term, it can be omitted for all future con-
sideration. Thus, we can write the Lagrangian density in
the form

L =
1
2
wtwx +

1
2
w2

4x + α1wxw2
3x

+ α2w
2
xw2

2x + α3w
3
xw3x + α4wxw2xw4x + 7w5

x. (28)

We now demand that L in (28) when substituted in the
appropriate Euler-Lagrange equation

δL
δw

− d
dt

(
∂L
∂wt

)
= 0 (29)

should reproduce the evolution equation in (22). This gives
α1 = α4 + 7 and α2 = 3α3 + 35. Thus the calculated
Lagrangian density will depend on the choices of the val-
ues α3 and α4. If we write three different expressions for
L, namely, L1, L2 and L3 corresponding to arbitrary val-
ues (1, 1), (2, 2) and (3, 3) for the pair (α3, α4) then it
is easy to see that these Lagrangian densities differ by a
total derivative and we have

L3 − L2 = L2 − L1 =
d
dx

(
w3

xw2x + wxw2xw3x − 1
3
w3

2x

)
.

(30)

The Lagrangian density in (28) for chosen values of α’s is
of order 4. Using the identity

w2
4x =

d
dx

(w3xw4x) − w3xw5x (31)

we can construct a fifth-order Lagrangian density given by

L′ =
1
2
wtwx − 1

2
w3xw5x + 8wxw2

3x + 38w2
xw2

2x

+ w3
xw3x + wxw2xw4x + 7w5

x, (32)

with (α3, α4) = (1, 1).



108 The European Physical Journal D

In writing (32) we have omitted the total derivative
term. One can easily verify that L′ via (29) also yields the
evolution equations. It is important to note that L′ is of
order 5 and further enhancement of order is not possible.

Both L and L′ can be Hamiltonized to write

H0 = −1
2
w2

4x − 8wxw2
3x − 38w2

xw2
2x

− w3
xw3x − wxw2xw4x − 7w5

x (33)

and

H′
0 =

1
2
w3xw5x − 8wxw2

3x − 38w2
xw2

2x − w3
xw3x

− wxw2xw4x − 7w5
x. (34)

The expressions for H0 and H′
0 in conjunction with (2)

produce the same evolution equation as given in (22).
In terms of the above procedure we have calculated L

for third member in the hierarchy given by

ut = u9x − 252 u3xu4x − 168 u2xu5x − 72 uxu6x

− 18 uu7x + 1302 uxu
2
2x + 966 u2

xu3x

+ 1260 uu2xu3x + 756 uuxu4x + 126 u2u5x

− 1260 uu3
x − 2520 u2uxu2x − 420 u3u3x + 630 u4ux.

(35)

The general expression for L can be written as

L =
1
2
wtwx − 1

2
w2

5x − 21w6
x + α1w

4
2x + α2w

3
3x

+ α3w
2
2xw5x + α4w2xw3xw4x + α5wxw2

4x

+ α6wxw3xw5x + α7wxw2
2xw3x + α8w

2
xw2

3x

+ α9w
2
xw2xw4x+α10w

3
xw2

2x + α11w
3
xw5x+α12w

4
xw3x

(36)

with

α5 − α6 = 9, (37)
α10 − 4α12 = 210, (38)

α9 − α8 − 3α11 = 63, (39)
3α4 − 6α2 − 6α3 − 3α5 = 33, (40)

and 2(3α1 − α7 + 3α8 − α9) = −273. (41)

The relations in (37–41) indicate that seven different α’s
can be chosen arbitrarily to generate gauge equivalent
Lagrangians for the ninth order equation in (35). Note
that such freedom was limited only to two α values for
the equation in (21). In the present case for α3 = α4 =
α6 = α7 = α9 = α11 = α12 = 0, we have found

L =
1
2
wtwx − 1

2
w2

5x − 21w6
x +

35
2

w4
2x − 10w3

3 x

+ 9wxw2
4x − 63w2

xw2
3x + 210w3

xw2
2x (42)

and

H0 =
1
2
w2

5x + 21w6
x − 35

2
w4

2x + 10w3
3x − 9wxw2

4x

+ 63w2
xw2

3x − 210w3
xw2

2x. (43)

It is easy to verify that the consistency of equations (2, 43)
gives (35) expressed in terms of w(x, t).

We conclude by noting that the present work starts
with higher KdV equations and derives a method to con-
struct expressions for corresponding Lagrangian densities
which need not be unique. These equivalent Lagrangian
densities result in compatible Hamiltonian densities for
the theory of Zakharov et al. [1,2].

The canonical formulation for higher order nonsingular
or nondegenerate Lagrangian was derived by Ostrogradski
[13] more than 150 years ago. This approach has recently
been adapted for the field theory. In the full form of the
field theoretic generalization [14] of Ostrogradski formal-
ism one would require to calculate canonical momenta cor-
responding to w and its derivatives for calculating H0.
Since the evolution equations are of first order in time
we could proceed by working out the momentum density
conjugate to w alone.
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